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Opening Remarks



Examples of Scientific Discoveries

Science is a distinguished by its reliance on formal laws, models, 
and theories of observed phenomena.   

We often refer to the 
process of finding 
such accounts as 
scientific discovery.  

Kepler’s laws of planetary motion Newton’s theory of gravitation Krebs’ citric acid cycle

Dalton’s 
atomic 
theory
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Many philosophers of science had avoided discovery, believing it 
immune to logical analysis. E.g., Popper (1934) wrote:

The initial stage, the act of conceiving or inventing a theory, seems
to me neither to call for logical analysis nor to be susceptible of
it … My view may be expressed by saying that every discovery
contains an ‘irrational element’, or ‘a creative intuition’ …

Hempel and many others also believed discovery was inherently 
irrational and beyond understanding. 

However, advances made by two fields – cognitive psychology
and artificial intelligence – in the 1950s suggested otherwise. 

Mystical Views of Discovery
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Scientific Discovery as Problem Solving

• Search through a space of problem states

• Generated by applying mental operators

• Guided by heuristics to make it tractable

Simon (1966) offered another view – scientific discovery is a 
variety of problem solving that involves:  

Heuristic search had been implicated in many cases of human 
cognition, from proving theorems to playing chess. 

This framework offered not only a path to understand scientific 
discovery, but also ways to automate this mysterious process. 
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Einstein’s Search Succeeds At Last



The Task of Scientific Discovery

We can state the discovery task in terms of the inputs provided 
and the outputs produced: 
• Given: Scientific data or phenomena to be described or explained

• Given: Knowledge and heuristics about the scientific domain

• Given: A space of candidate laws, hypotheses, or models

• Find: Laws or models that describe or explain the observations

The outputs should not only generalize well; they should be 
stated in an established scientific formalism. 
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Research on computational scientific discovery has addressed 
many different forms of laws and models. 

Early Decades of Scientific Discovery
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Successes of Computational Discovery

AI systems of this type have helped to discover new knowledge 
in many scientific fields: 

• reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)

• qualitative chemical factors in mutagenesis (King et al., 1996)
• quantitative laws of metallic behavior (Sleeman et al., 1997)
• quantitative conjectures in graph theory (Fajtlowicz et al., 1988)

• qualitative conjectures in number theory (Colton et al., 2000)
• temporal laws of ecological behavior (Todorovski et al., 2000)
• models of gene-influenced metabolism in yeast (King et al., 2009)

Each of these led to publications in the refereed literature of the 
relevant scientific field.  
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• Stanford University / January 1989
Symposium on Computational Models of Scientific Discovery and Theory Formation

• Stanford University / March 1995
AAAI Spring Symposium on Systematic Methods of Scientific Discovery

• Brighton, UK / August 1998
ECAI-98 Workshop on Machine Discovery

• University of Pavia / December 1998
Conference on Model-Based Reasoning in Scientific Discovery

• Stanford University / March 2001
Symposium on Computational Discovery of Communicable Knowledge

• Stanford University / March 2008
Symposium on Computational Approaches to Creativity in Science

• Arlington, VA / November 2012
AAAI Fall Symposium on Discovery Informatics

• Carnegie Mellon Silicon Valley / June 2013
Symposium on Cognitive Systems and Discovery Informatics

• San Mateo, CA / March 2023
AAAI Spring Symposium on Computational Approaches to Scientific Discovery

Meetings on Scientific Discovery
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Books on Scientific Discovery

Research on computational discovery has led to multiple books.  

These demonstrate the field’s diversity of problems and methods.   

1987 1990

2007
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1987



• Emphasized the availability of large amounts of data

• Used computational methods to find regularities in the data
• Adopted heuristic search through a space of hypotheses 

• Initially focused on commercial applications and data sets

During the 1990s, a new research paradigm – known as data
mining – emerged that:

Most work used notations invented by computer scientists, unlike 
scientific discovery, which used scientific formalisms. 

Data mining has been applied to scientific data, but the results 
seldom bear a resemblance to scientific knowledge.

The Data Mining Movement
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Six Varieties of Scientific Discovery

We can divide scientific discovery into six broad classes of 
computational activities: 
• Formation of taxonomic hierarchies
• Discovery of qualitative laws
• Discovery of numeric laws / equations 
• Formation of structural models
• Creation of causal models
• Construction of process models

I will cover the topics in this order, which mirrors their typical  
appearance in the history of science. 
In closing, I will discuss their integration and relation to other
aspects of science, such as experimentation.
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Forming Taxonomic Hierarchies



Scientific Taxonomies

Taxonomies provide the most basic form of scientific knowledge 
in that they: 

• Define categories or types of entities

• Associate specific entities with those types

• Organize these types into an IS-A hierarchy

Taxonomies provide the basis for other varieties of scientific 
information processing.

Thus, taxonomies logically precede other types of knowledge,
although later results can modulate them. 

15



Examples of Taxonomies

Taxonomic hierarchies play prominent roles in every scientific 
discipline. Examples include: 

• Astronomy (planets, moons, stars, asteroids, comets)

• Biology (animals, mammals, primates, apes, homo sapiens)

• Chemistry (elements, metals, nobles, compounds, organics)

• Diseases (bacterial, viral, parasitic, autoimmune, cancer)

• Particle physics (baryons, leptons, protons, electrons, muons)

Such taxonomies evolve over time as scientists observe and 
categorize new entities. 
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Uses of Taxonomies

Scientists use taxonomic hierarchies for a number of purposes. 
These include: 

• Classifying new entities or events into existing categories

• Predicting the features or behavior of new entities

• Describing higher-level knowledge in which types participate)

Thus, taxonomies provide fundamental support for the overall 
scientific process. 

This is reflected by current interest in tools for developing and 
using ontologies like OWL-DL and Protégé. 
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The Task of Taxonomy Formation

We can specify the problem of taxonomy formation in terms of 
inputs and outputs:

• Given: A set of observed entities with associated descriptors

• Given: A space of possible taxonomic hierarchies

• Find: A set of categories and entities associated with them

• Find: Descriptions for each of these categories

• Find: A taxonomy that organizes categories in a hierarchy

This is an unsupervised discovery task that is closely related to 
the problem of clustering.
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Taxonomy Formation as Heuristic Search

We can view taxonomy formation as search through a space of 
taxonomic hierarchies. This requires:

• A direction in which to construct the taxonomy
• E.g., from the bottom up or the top down

• Criteria for assigning entities to categories
• E.g., a similarity of distance metric

• A strategy for characterizing categories
• E.g., general to specific, specific to general, statistical

Most methods carry out batch processing, but incremental 
approaches are also possible.
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Numerical Taxonomy

20

An early use of computers in biology was numerical taxonomy 
(Sokal & Sneath, 1963), which offered ways to:

• Represent / store organisms’ phenotypes in digital form
• Often encoded as Booleans features (present or absent)

• Define and compute the similarity between two species or taxa

• Use these scores to guide search in the space of dendrograms

Techniques typically carried out                                           
greedy search, with the results                                        
depending on similarity measure. 

Modern methods instead focus on
computational phylogenetics. 



Approaches to Taxonomy Formation

Computational researchers have developed three paradigms for 
taxonomy formation:

• Agglomerative methods
• Find two nearest cases or clusters, merge them, and recurse

• Divisive methods
• Separate cases into classes, then recurse to divide them further

• Iterative optimization
• To find a single partition, assign cases to one of K random groups 

and reassign them iteratively until convergence

Iterative optimization can be used as a subroutine for divisive 
taxonomy construction.
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Case Study: AutoClass

22

Cheeseman et al. (1988) reported AutoClass, a probabilistic 
system for taxonomy formation that:

• Represented categories in terms of means and variances

• Initially assigned entities to K classes at random

• Used expectation maximization to update class descriptions

• Increased the numbers of categories until no benefit seen

They applied AutoClass to infrared data on 5425 stars at 94 
wavelengths to 77 distinct classes.

These included a new class of blackbody stars with significant 
infrared excess, possibly due to surrounding dust.



Case Study: RETAX

23

ReTAX (Alberdi & Sleeman, 1997) revised its taxonomies in 
response to new observations.
Each case was described a set of features (e.g., leaf size, type of  
fruit), and a target category.
If a new case did not match the category’s defining features, the 
system attempted to revise its taxonomy. 
E.g., ReTAX proposed merging genera Pernettya and Gaultheria. 

Andromeda

Ericaceae

GaultheriaPernettya …

A. uva-ursi P.  tasmanica G. oppositifolia G. rupestris

G. antipoda



Inducing Quantitative Laws



Qualitative Laws

A second form of knowledge, qualitative laws, use defined 
taxonomic concepts to specify:

• Relations that hold among entities or their attributes

• The conditions under which those relations occur

Such regularities may involve numeric attributes but they do   
not include equations or parameters.

These sometimes have causal interpretations but they may be 
simple associations.

Qualitative laws appear early in the history of a discipline but 
only after taxonomies have been formed.
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Examples of Qualitative Laws

Like taxonomies, qualitative laws occur throughout the sciences. 
Examples include:

• Astronomy (Sun rises and sets, stars revolve, planets wander)

• Chemistry (acids react with alkalis, iron rusts, salt dissolves)

• Thermodynamics (heated water boils, temperatures equalize)

• Ecology (fish live in water, dolphins feed on fish)

Qualitative laws may describe either static relations or ones that 
involve change over time.
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Uses of Qualitative Laws

Scientific researchers can use qualitative laws in a variety of 
ways. These include:

• Describing the behavior of known classes of entities

• Predicting the behavior of newly discovered entities

• Providing context for stating quantitative relations

Qualitative laws move beyond taxonomic knowledge to specify
relations among known categories.
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The Task of Qualitative Discovery

28

We can specify the problem of qualitative discovery in terms of 
inputs and outputs:

• Given: A set of observed entities, their features, and relations

• Given: A space of possible rules or generalized relations

• Find: A set of qualitative laws that describe the observations

• Find: Conditions under which these laws appear to hold

Because many qualitative laws can be stated as rules, the task is 
closely related to rule induction.

Thus, there are some cases in which methods for ‘data mining’ 
can aid the discovery process.



Qualitative Discovery as Heuristic Search

29

We can approach this task as heuristic search through a space of 
qualitative relations. This requires:
• An initial hypothesis or relation from which to start
• E.g., an empty set of conditions
• Operators for generating or modifying candidate hypotheses
• E.g., adding or removing conditions
• Heuristics for evaluating the quality of candidate hypotheses
• E.g., ability to summarize the data, law simplicity
• A termination criterion for when to halt search
• E.g., when no further improvement occurs

Again, this maps nicely onto rule-induction methods, although 
observations may not be labeled.



Case Study: The RL System

30

The RL system (Lee et al., 1998) induced qualitative laws that     
it expressed as logical rules.
Each rule stated that, if certain conditions held for an entity or 
situation, then it was a positive instance.
As input, RL took labeled training cases and details about: 

• A hierarchy over 
attributes’ values

• Constraints among 
rules’ attributes

• Minimum accuracy

• Maximum attributes



Case Study: The RL System

One application of RL involved finding links from symptoms to 
lower respiratory syndrome. 

Each induced rule included 
a measure of support that it  
received from the data. 

Other RL demonstrations 
included identification of   
carcinogens and prediction 
of crystal formation. 



Case Study: PROGOL
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King et al. (1996) reported the discovery of qualitative factors 
that determine mutagenicity.

Given 230 nitro compounds, some mutagenic and others not, 
their ILP system PROGOL:

•Used heuristic search to find a rule that covered some cases

• Repeated this process to find others to cover the remainder

E.g., a compound is mutagenic if it has an aliphatic carbon atom  
attached by a single carbon bond in a six-member aromatic ring.

These relational descriptions offered insights into the deeper 
causes of mutation, unlike statistical approaches.



Case Study: The Glauber System
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Langley et al.’s (1987) Glauber induced qualitative laws of 
chemistry from observations like:
• (tastes HCl sour), (tastes NaOH bitter), (tastes NaCl salty)
• (reacts {HCl NaOH} {NaCl}), (reacts {HNO3 NaOH} {NaNO3})

From these, the system formed quantified generalizations like
• ∀ Acid (tastes Acid sour)
• ∀ Alkali (tastes Alkali bitter) 
• ∀ Salt (tastes Salt salty)
• ∀ Acid ∀ Alkali ∃ Salt (reacts {Acid Alkali} {Salt})

Glauber interleaves defining new categories with substituting 
their names into observed relations to generate laws.  



Discovering Quantitative Laws



Quantitative Laws

A third type of knowledge, numeric or quantitative laws, moves 
beyond qualitative relations to specify:

• Functional forms that relate the attributes of entities

• Parameters associated with these functional forms

• The conditions under which these numeric laws hold

As with qualitative laws, these may be either causal relations or 
simple associations

Quantitative laws invariably appear after qualitative relations, 
which provide context for them.
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Examples of Quantitative Laws

Quantitative laws are just as pervasive as taxonomies and 
qualitative relations. Examples include:

• Astronomy (planetary periods, Kepler’s laws)

• Chemistry (laws of combining weights, volumes)

• Physics (Coulomb’s law, momentum, Snell’s law, Ohm’s law)

• Thermodynamics (ideal gas law, Black’s law of specific heat)

Such laws are the poster children of science, often presented   
in textbooks and popular treatments.

Researchers use quantitative laws in much the same ways as 
qualitative ones, but with more precision.
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The Task of Equation Discovery

We can specify the problem of equation discovery in terms of 
inputs and outputs:

• Given: A set of observed entities with numeric descriptors

• Given: A space of possible functional forms with parameters

• Find: One or more numeric laws that describe the observations

• Find: Conditions under which these laws appear to hold

This task is similar to regression in statistics, but considers a 
much wider range of functional forms.

Note: Although sometimes called ‘symbolic regression’, this 
term is an oxymoron, as all regression is symbolic.
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Equation Discovery as Heuristic Search

We can view equation discovery as heuristic search through a 
space of numeric laws. This requires:
• An initial equation structure from which to start
• E.g., an empty formula assuming an attribute is constant
• Operators for generating or modifying candidate equations
• E.g., adding or removing terms, revising parameters
• Heuristics for evaluating the quality of a candidate law
• E.g., terms are nearly constant, fit the observations
• A termination criterion for when to halt search
• E.g., when the observations are fit sufficiently well

Exhaustive search is possible in special cases, but many settings 
rely on heuristics to make search tractable.
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Case Study: The Bacon System

• Carried out search in a problem space of theoretical terms; 

• Using operators that combined old terms into new ones; 
• Guided by heuristics that noted regularities in data; and 

• Applied these recursively to formulate higher-level relations. 

Langley (1979, 1981) reported Bacon, an early AI system for 
quantitative discovery that:   

Bacon rediscovered a variety of numeric laws from the history 
of physics and chemistry. 

The system was named after Sir Francis Bacon because it used 
a data-driven approach to discovery.  
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Bacon on Kepler’s Third Law

The Bacon system carried out heuristic search, through a space 
of numeric terms, looking for constants and linear relations. 

This table shows its progression from the distance and period of 
Jupiter’s moons to a term with nearly constant value.

D

A
B
C

d/pp

16.69

1.77
3.57
7.16

1.48

3.20
2.43
1.96

d2/p

36.46

18.15
21.04
27.40

d3/p2

53.89

58.15
51.06
53.61

moon d

24.67

5.67
8.67

14.00
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Bacon on the Ideal Gas Law

Bacon rediscovered the ideal gas law, PV =  aNT + bN, in three 
stages, each at a different level of description. 

PV =  c1 PV =  c2 PV =  c3 PV =  c4 PV =  c5 PV =  c6 PV =  c7 PV =  c8 PV =  c9

c/N = d1 c/N = d2 c/N = d3

d = aT + b

Parameters for laws at one level became dependent variables in 
laws at the next level, enabling discovery of complex relations. 
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Numeric Laws Discovered by Bacon

Basic algebraic relations:

• Ideal gas law PV =  aNT + bN
• Kepler’s third law D3 = [(A – k) / t]2 = j
• Coulomb’s law FD2 / Q1Q2 = c
• Ohm’s law TD2 /  (LI – rI) = r

Relations with intrinsic properties:

• Snell’s law of refraction sin I / sin R  = n1 / n2

• Archimedes’ law C  = V  +  i
• Momentum conservation m1V1 = m2V2

• Black’s specific heat law c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf
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 HERBERT A. SIMON, PATRICK W. LANGLEY,
 AND GARY L. BRADSHAW

 SCIENTIFIC DISCOVERY
 AS PROBLEM SOLVING*

 The question to be addressed in this paper is whether we need a
 special theory to explain the mechanisms of scientific discovery, or
 whether those mechanisms can be subsumed as special cases of the
 general mechanisms of human problem solving. One of the authors
 has previously published several papers arguing for the latter posi
 tion.1 The main evidence adduced in those papers for the thesis that
 scientific discovery is problem solving was the behavior of some
 computer programs that, using simple problem-solving heuristics and
 selective search, were capable of discovering patterns in simple
 sequences of symbols.2 Much stronger evidence has now been pro
 vided by the performance of D. B. Lenat's AM program,3 which
 discovers mathematical concepts and conjectures theorems, and P.
 W. Langley's BACON programs,4 which discover invariants in bodies
 of empirical data. It is a main purpose of this paper to review this new
 evidence and its implications for the theory of scientific discovery.

 Of course there are several respects in which scientific discovery is
 obviously different from other instances of problem solving. First,
 scientific inquiry is a social process, often involving many scientists
 and often extending over long periods of time. Much human prob
 lem solving, especially that which has been studied in the psy
 chological laboratory, involves a single individual working for a few
 hours at most.

 A second way in which scientific inquiry differs from much, but not
 all, other problem solving is in the indefiniteness of its goals. In
 solving the Missionaries and Cannibals puzzle, we know exactly what
 we want to achieve: we want a plan for transporting the missionaries
 and cannibals across the river in the available small boat without any
 casualties from drowning or dining. Some scientific discovery is like
 that: The mathematicians who found a proof for the Four-color
 Theorem knew exactly what they were seeking. So did Adams and

 Synthese 47 (1981) 1-27. 0039-7857/81/0471-0001 $02.70
 Copyright ? 1981 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
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COGNITIVE SCIENCE 5, 31-54 (1981)  

Data-Driven Discovery of Physical Laws 

PAT LANGLEY 
Department of Psychology 

Carnegie-Mellon University 
Pittsburgh, Pennsylvania 15213 

BACON.3 is a production system that discovers empirical laws. Although it does 
not attempt to model the human discovery process in detail, it incorporates some 
general heuristics that can lead to discovery in a number of domains. The main 
heuristics detect constancies and trends in data, and lead to the formulation of 
hypotheses and the definition of theoretical terms. Rather than making a hard 
distinction between data and hypotheses, the program represents information at 
varying levels of description. The lowest levels correspond to direct observations, 
while the highest correspond to hypotheses that explain everything so for ob- 
served. To take advantage of this representation, BACON.3 has the ability to 
carry w t  and relate multiple experiments, collapse hypotheses with identical 
conditions, ignore differences to let similar concepts be treated as equal, and to 
discover and ignore irrelevant variables. BACON.3 has shown its generality by 
rediscovering versions of the ideal gas law, Kepler’s third law of planetary 
motion, Coulomb‘s law, Ohm‘s law, and Golileo’s laws for the pendulum and 
constant acceleration. 

INTRODUCTION 

Centuries ago, physicists such as Kepler and Galileo began to discover laws that 
described the physical world. In this paper I describe BACON.3, a computer 
program that is capable of similar discoveries. The program is named after Sir 
Francis Bacon (1561-1626), an early philosopher of science. Bacon the 
philosopher believed that if one gathered enough data, any regularities in those 
data would leap out at the observer. BACON.3 the program discovers empirical 
laws in just this way. 

The research reported in this paper was supported in part by Grant HES75-22021 from the 
National Science Foundation, in part by NIMH Grant MH-07722, and in part by ARPA Grant 

I would like to thank Herbert Simon, Eric Johnson, Marshall Atlas, Marilyn Mantei, Doug 
F33615-78-C-1551. 

Lenat, and Robert Neches for discussions leading to the ideas in this paper. 
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Bacon inspired many additional systems for equation discovery:

• ABACUS (Falkenhainer, 1985) and ARC (Moulet, 1992)
• Fahrenheit (Zytkow, Zhu, & Hussam, 1990)
• COPER (Kokar, 1986) and E* (Schaffer, 1990)
• IDS (Nordhausen & Langley, 1990)
• Hume (Gordon & Sleeman, 1992)
• DST (Murata et al., 1994) and RF5 (Saito & Nakano, 1997)
▫ LaGrange (Dzeroski & Todorovski, 1994) and PRET (Stolle, 1998)
▫ SSF (Washio et al., 1997) and GP (Koza et al., 2001)

These relied on different methods but also searched for explicit 
mathematical laws that matched data. 

Successors to Bacon
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Case Study: The RF5 System

45

Saito and Nakano’s (1997) RF5 system used neural network 
technology to discover numeric laws by:

• Transforming a functional form into a three-layer network
• With product units for hidden layer, additive units for top layer

• Using second-order gradient descent to search for parameters
• Halting search on finding weights that minimize an MDL score
• Transforming the induced network into a polynomial expression

This approach demonstrates that neural networks can produce 
interpretable results if used properly.

An extension, RF6, can also find conditions on numeric laws.



Case Study: The LaGramge System
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Todorovski and Dzeroski’s (1997) LaGramge was a Bacon-like 
system that discovered dynamic laws from: 
•Measurements for a multivariate time series 
•A set of dependent variables to predict
•A space of possible equations specified as a grammar
The system produced an algebraic or differential equation for 
each dependent variable.
The developers applied LaGramge to ecological, hydrological, 
and other dynamic data sets.

E ➞ E + F | E – F | F
F ➞ F * T | F / T | T
T ➞ constant | variable | (E)



In recent years, a new line of research of inducing differential 
equation models has emerged:  
• Brunton, Proctor, and Kutz (PNAS, 2016)
• Chen, Rubanova, Bettencourt, and Duvenau (NeurIPS, 2019)
• Cranmer et al. (NeurIPS, 2020)
• Iten, Metger, Wilming, Rio, and Renner (Phy Rev Letters, 2020).
• Raissi and Karniadakis (J Comp Physics, 2018)
• Schmidt and Lipson (Science, 2009)
• Wang, Maddix, Wang, Faloutsos, and Yu (NeurIPS Wkshp, 2020)
• Wu and Tegmark (Physical Review E, 2019)
• Zhang and Lin (Proc Royal Society, 2018)

This work emphasizes statistics more than older efforts, but also 
searches a space of models stated in scientific formalisms. 

Other Work on Dynamic Law Discovery

47



Forming Structural Models



Description vs. Explanation

The early stages of any scientific field focus on descriptions that 
summarize observed regularities.

Mature sciences instead emphasize the creation of models that 
explain phenomena in terms of interacting elements.
• Explanatory models move beyond description to provide deeper 

accounts linked to theoretical constructs.

• The activity of generating such accounts is often abductive rather 
than inductive.

We will examine three types of explanatory models: structural, 
causal, and process.
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Laws vs. Models

To understand the core difference between descriptions and 
explanations, we must distinguish between:

• Laws, which are isolated (often relational) statements
• E.g., hydrogen reacts with oxygen, PV =  aNT + bN

•Models, which are collections of linked law-like elements
• E.g., chains of reactions, sets of equations

Thus, law-like elements are the building blocks of models that 
move beyond simple description.

An important feature is that some model elements may be 
inferred rather than observed.
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Structural Models

A structural model is a variety of scientific explanation that 
specifies:

• An observed entity and its associated descriptors

• A set of constituents which compose that entity

• A set of relations among those constituents (optional)

A collection of such models typically share some inferred 
constituents.

The models also share assumptions about how to derive the 
observed features from constituents.
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Examples of Structural Models

Structural models arise in many fields of science. Examples 
include:

• Chemical structures (H2O, NH3, NaOH, benzene, acetone)

• Gene sequences (for different organisms)

• Geological deposits (proportions of different minerals)

• Stellar compositions (proportions of hydrogen, helium, carbon)

These specify entities’ building blocks and, in some instances,  
how they fit together.

Such models always have qualitative structure but they may also  
include numeric information. 
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Uses of Structural Models

Scientists can use structural models in multiple ways, such as 
invoking them to explain:

•Why observed entities have their measured characteristics

•Why some entities occur in nature but others do not

• How to create instances of these entities from components

Such models take one beyond description to provide a deeper 
understanding of phenomena. 
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The Task of Structural Modeling

We can specify the problem of structural modeling in terms of 
inputs and outputs:

• Given: A set of observed entities with associated descriptors

• Given: A space of possible structural models

• Find: Structural models that explain the observed entities

• Find: Unobserved but inferred entities and relations (optional)

This task typically involves abductive inference rather than 
induction from data.
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Structural Modeling as Search

We can view this task as heuristic search through a space of 
structural models. This requires:
• An initial set of models from which to start
• E.g., an empty model for each observed entity
• Operators for generating or revising current models
• E.g., adding or removing constituents
• Heuristics for evaluating the quality of a candidate model
• E.g., ability to account for observed descriptors
• A termination criterion for when to halt search
• E.g., when all observed entities have been explained

Naturally, details will differ depending on the class of structural 
models being considered.
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Case Study: The Dalton System

56

Langley et al.’s (1987) Dalton inferred the constituent structure 
of substances from chemical reactions.
E.g., starting from the reaction (hydrogen oxygen ➞ water), it 
inferred the model:

({{h h} {h h}} {{o o}} ➞ {{h h o} {h h o}})
This account asserted that: 

• Hydrogen and oxygen molecules are diatomic; and

• Hydrogen and oxygen molecules combine in a 2:1 ratio to 
produce two water molecules.

DALTON arrived at its discoveries through a heuristic search 
guided by knowledge available to 19th Century chemists. 



Case Study: Gell-Mann

57

Zytkow and Fischer’s (1990) GELL-MANN system postulated 
hidden structures in particle physics.

•As input, it took a collection of known particles and their 
quantum properties;

•As output, the system produced a ‘bag’ of components for each 
particle and associated property values.

For example, when given descriptions of seven elementary 
particles, it produced the baryon octet model.

The system also mapped baryons to arrangements of quarks and 
conjectured values for their properties.



Case Study: Gell-Mann

Inputs: Outputs:
particle charge isospin strange.

p 1 1/2 0
n 0 -1/2 0
Σ+ 1 1 -1
Σ0 0 0 -1
Σ- -1 -1 -1
Ξ0 0 1/2 -2
Ξ- -1 -1/2 -2

quark charge isospin strange.
u 2/3 1/2 0
d -1/3 -1/2 0
s -1/3 0 -1

part. ch. iso. str. quarks
1 0 1 uuu

p 1 1/2 0 uud
n 0 -1/2 0 uus
Σ+ 1 1 -1 udd
Σ0 0 0 -1 uds
Σ- -1 -1 -1 uss

-1 -3/2 0 ddd
Ξ0 0 1/2 -2 dds
Ξ- -1 -1/2 -2 dss

-1 0 -3 sss

Given descriptions of elementary 
particle, GELL-MANN infers the 
standard octet quark model.



Inferring Chemical Structures

DENDRAL (Lindsay et al., 1980) inferred a molecule’s chemical 
bonds given its component formula and a mass spectrogram.

E.g., from the formula C6H5OH and other information, it found 
organic structures like: H

C

HC OH

H
C

C
H

C
H

C

DENDRAL relied on heuristic search to infer structural models,  
using knowledge from 20th Century chemistry as a guide. 

Many of its results appeared in the refereed chemistry literature. 
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Case Study: Inferring Genomes

60

Early methods for DNA sequencing reconstructed a complete 
genome by combining many fragments.

Systems like ARACHNE and Celera Assembler addressed this 
problem by:  
• Finding subsequences repeated across fragments

• Detecting and correcting errors

• Joining overlapping fragments into contiguous regions 

The systems included several checks to ensure the resulting 
structure was well supported by the data. 

More recent sequencing methods have made this less critical. 



Discovering Causal Models



Causal Models

A causal model is an abstract form of scientific explanation that 
specifies:

• A set of variables or events, at least some of them observable

• A set of causal links that connect these variables or events

• Assumptions about how to combine causal influences

That is, a causal model is a collection of law-like elements, 
either qualitative or quantitative in character.

A causal model may have deterministic influences, stochastic
influences, or a mixture of them. 

Abstract causal models are rare in science, but they appear in 
biology, medicine, and the social sciences. 
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What is a Causal Influence? 

We can define causality in abstract but clear terms; we will say 
that variable X causally influences variable Y if: 
• A change in X’s value results in a change to Y’s value
• Provided that other variables are held constant

Note that this definition of causality does not state: 
• That X is the only causal influence on Y

• The functional form of the causal relation

Such abstract information can be useful even when influences 
are probabilistic rather than deterministic. 
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oil production

A Qualitative Causal Model 

gas tax

gas price traffic pollution

lung disease

+

+

+–

–

tolls

–

This model includes a set of qualitative causal influences among 
quantitative variables. 

Consider a simple qualitative causal model about lung disease. 

64



oil production

Using a Qualitative Causal Model 

gas tax

gas price traffic pollution

lung disease

+

+

+–

–

tolls

–

This pathway indicates that an increase in oil production will 
lead to an increase in lung disease. 

We can use causal chaining to make predictions from our model. 
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X1 = k1

X2 = w12 X1 + k2

X3 = w13 X1 + w23 X2 + k3

X4 = w14 X1 + w24 X2 + w34 X3 + k4

Structural Equation Models

There are also quantitative types of causal accounts, as in structural 
equation models. 

Sometimes called linear causal models, these take the form of 
directed acyclic graphs, which have no loops. 

These are closely akin to Bayesian networks, although they were 
introduced in the 1920s.

X2

X3

X1

X4

w14

w24

w34

w12

w13
w23
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Causal Model Discovery as Search

As before, we can view causal model discovery as search in a 
space of model structures if we specify:
• An initial model from which to start the search
• E.g., an empty model or a fully connected graph
• Operators for generating or revising current models
• E.g., adding or removing a causal link
• Heuristics for deciding whether to add or remove a link
• E.g., ability to explain observed variations
• A termination criterion for when to halt search
Experimental control is a powerful aid for causal inference, but it 
is definitely not required.
A primary counterexample is Glymour et al.’s (1987) TETRAD. 
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Heuristic Search in TETRAD

TETRAD used the ‘PC’ algorithm to search through a space of 
linear causal models by: 

• Initializing the model to be a complete, undirected graph. 

• Removing an edge between variables if they are conditionally 
independent given values of other terms. 

• Giving each edge a direction based on the connectivity of the 
reduced undirected graph. 

The tests for conditional independence involve four-way relations 
among variables’ partial correlations.

This approach lets TETRAD infer causal influences / directions 
from nonexperimental data.
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Case Study: Modeling Gene Regulation

An important application of causal model discovery involves the 
inference of gene regulatory networks: 

• Given: Expression levels for genes in different situations

• Given: Background knowledge of gene types / functions

• Find: Which genes influence the expression of other genes

• Find: Whether these influences facilitate or inhibit activity

There is a large literature in computational biology on inferring 
gene regulation networks.

Bayes nets are popular, but Bay et al. (2003) used TETRAD and 
Zupan et al. (2003) used abductive reasoning. 
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Discovering Process Models



Process Models

A process model is another form of scientific explanation that 
specifies:

•Observed entities and descriptors at different times

•A set of processes involving those and other entities

•A set of interactions among those processes

Taken together, the processes and their interactions explain the 
observations, typically through chaining. 

Such process models often refer to the constituents of entities 
and thus build on structural accounts. 
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Examples of Process Models

Process models also occur throughout the sciences. Examples 
include: 

•Metabolic pathways (e.g., glycolysis, urea cycle)

• Nuclear reaction networks (e.g., stellar nucleosynthesis)

• Geological process models (e.g., evolution of landforms)

• Ecological process models (e.g., food and nutrient chains)

These specify a system’s constituent processes and interactions 
among them.

Models specify the qualitative organization but may include 
numeric annotations.
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Uses of Process Models

Scientists can use such process models in multiple ways, such as 
to clarify:

•Why observed entities have their measured characteristics

•Why some entities occur in nature but others do not

• How to create instances of these entities from components

They let one move beyond description to deeper understanding 
of dynamic phenomena. 

Most process models have a causal interpretation but organize 
content in higher-level terms. 
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The Task of Process Modeling

We can specify the problem of process modeling in terms of 
inputs and outputs:

• Given: A set of entities described at different points in time

• Given: A space of possible process models

• Find: A set of interacting processes that explain this behavior

• Find: Unobserved but inferred entities in the processes (optional)

Again, this task typically involves abductive explanation rather 
than induction from data.
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Process Modeling as Heuristic Search

We can view this task as heuristic search through a space of 
process models. This requires:
• An initial model from which to start
• E.g., an empty model with no processes
• Operators for generating or revising current models
• E.g., adding or removing processes
• Heuristics for evaluating the quality of a candidate model
• E.g., ability to account for observed descriptors
• A termination criterion for when to halt search
• E.g., when all observed phenomena are explained

Both the organization of the search space and heuristics are 
crucial to making this tractable.
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Case Study: MECHEM

MECHEM (Valdes-Perez, 1994) generated chemical pathways to 
explain observed reactions.

The system used constrained 
exhaustive search to generate 
candidate explanations. 

Users could select constraints 
they deemed relevant to the 
current task. 

MECHEM found numerous 
pathways that led to articles 
in the chemistry literature. 
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Case Study: MECHEM
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MECHEM used constrained exhaustive search through a space of 
candidate pathways by: 

• Favoring pathways with few species and steps

• Ensuring the unique generation of each pathway

• Requiring balanced chemical equations

• Limiting steps to two reactants and two products

These general constraints limited search drastically even before  
users added task-specific knowledge.

1. H2 + MM ➞ 2MH

2. CO + MM ➞M2CO

3. MH + M2CO ➞M2CHOM

Partial reaction pathway found by 
MECHEM



Case Study: The ACE System

Anderson et al. (2014) reported ACE, a system for cosmogenic 
dating in geology that: 

• Inputs nucleotide densities for rocks from a landform
• Incorporates knowledge about possible geological processes

• Generates process models for how the landform was produced

• Weighs arguments for and against each process explanation

ACE was downloaded ~600 times and was used actively by 
many geologists to understand their data. 
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Case Study: Food Webs in Ecology

In other process model work, Bohan et al. (2011) used abductive 
logic programming to: 

• Process data on relative abundances on invertebrates in fields
• Use knowledge about relative size, cooccurence, and predation

• Infer a three-level food web that relates 45 distinct species

Examination of the literature showed that most of these links 
were consistent with known predatory relations. 

However, the system also hypothesized novel predations that 
ecologists found interesting and important.  
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Unified and Integrated Discovery



Discovery as Search in a Matrix Space

81

Valdes-Perez, Simon, and Zytkow (1993) offer a unified analysis
of seven disparate discovery systems: 

• Stahl, which discovers chemical compounds from reactions

• Dalton, which infers molecular models from reactions

•MECHEM, which postulates chemical reaction pathways

• Gell-Mann, which infers structures of elementary particles

• BR-3 and PAULI, which posit new properties for particles

•Mendel, which infers genotype interactions from phenotypes

They describe each system as searching through a space of two  
or more matrices that can vary in size. 



The IDS System

82

Nordhausen and Langley (1993) reported IDS, an integrated 
discovery system that:

• Created a taxonomy from observed qualitative states
• E.g., HCl and NaOH decrease when in contact, NaCl increases
• Induced qualitative laws about temporal relations among states
• E.g., HCl and NaOH continue to change until one is consumed
• Found numeric relations both within and between these states
• E.g., final NaCL amount function of initial HCl, NaOH amounts

Each layer of description provided context for later discoveries.

IDS rediscovered laws about chemical reactions, Black's heat 
law, and conservation of momentum.



IDS Results for Chemistry
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INTEGRATED EMPIRICAL DISCOVERY 35 
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Figure 4. The top levels of the state hierarchy for the reactive behavior of acids and alkalis. 

discovers the law of combining weights for the reaction HC1 + NaOH ~ NaC1 (+ H20). 
At first, IDS observes histories of reactions involving 4.0 grams of liquid ttC1 and various 
amounts of liquid NaOH, where HC1 is the limiting agent. The system discovers that the 
reaction produces 6.60 grams of NaC1 regardless of the initial amount of the NaOH. Fur- 
thermore, the numeric discovery component finds a linear relationship between the final 
and initial mass of the NaOH. The slope of this relation is 1.0 and the intercept is 4.51. 
This is equivalent to stating that if 6.60 grams of NaC1 are produced, 4.51 grams of NaOH 
are consumed regardless of the initial mass of NaOH. The system stores both numeric 
laws on a quantity relation link between the two states. 

Next, IDS processes histories of this experiment in which the initial amount of HC1 is 
held constant at 5.00 grams. When the system incorporates these states into the taxonomy, 
it finds that these reactions produce 8.25 grams of NaC1 regardless of the initial amount 
of NaOH. Furthermore, IDS observes a linear relationship between the initial and final 
mass of the NaOH, as before. Although the slope of this relation is again 1.0, the intercept 
this time is 5.64, stating that 5.64 grams of NaOH are consumed in the reaction. When 
the system encounters reactions in which the initial amount of HC1 is 6.00 grams, it finds 
that 9.90 grams of NaC1 are produced and that 6.77 grams of NaOH are consumed. Thus, 
the slope of the linear relation between the final and initial amounts of NaOH is always 
1.0, whereas the intercept varies. The numeric discovery component infers that this inter- 
cept is 1.77 times the mass of NaC1. Because the intercept is equivalent to the amount of 
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Figure 5. Laws summarizing the reactive behavior of HC1 and NaOH. 

NaOH consumed, we see this relation corresponds to the law that the mass of NaC1 in 
the HC1 + NaOH ~ NaCI reaction is 1.77 times the consumed mass of NaOH. In addi- 
tion, IDS finds that the mass of the produced NaC1 is always 1.65 times the mass of the HC1. 

Figure 5 shows the abstract states from the state hierarchy that summarize the class of 
HC1 and NaOH reactions, including the two associated laws of combining weights. Since 
they refer to a specific pair of substances, these laws occur at the middle levels of the hier- 
archy, below the more abstract qualitative relation about acids and alkalis. This points out 
another advantage of the integrated approach we have taken. 

Claim 7. The IDS framework can augment qualitative laws with numeric ones when they 
are present, but it can f ind useful qualitative relations even in domains or at levels where 
it can f ind  no numeric laws. 

In this case, the system can only find quantitative regularities with respect to specific pairs 
of substances; the intrinsic properties it postulates do not support numeric relations of higher 
generality. However, this does not keep it from formulating more general qualitative laws 
that hold for the entire classes of acids and alkalis. Upon encountering a reaction between 
a new pair of substances from these classes, IDS would still be able to predict the qualitative 
result. The system takes a similar fallback position with respect to taxonomies, which it 
can form (and use for prediction) even in domains where qualitative laws are absent. 

This capability contrasts sharply with earlier work on empirical discovery. For instance, 
Langley et al?s (1987) GLAtrBER was able to formulate qualitative laws about reactions be- 
tween acids and alkalis, but it was unable to induce numeric relations to augment these 
laws. Similarly, Langley et al?s (1983) BACON could find numeric laws of combining weights, 
but it could not even represent failed reactions, much less form qualitative laws describing 
them. Falkenhainer and Michalski's (1986) ABACUS fares somewhat better on this dimension, 
in that it established qualitative conditions on its numeric laws, but it could not summarize 

Taxonomy and qualitative laws

Quantitative laws



A Robot Scientist for Electrochemistry

Zytkow et al. (1990) reported an integrated system for discovery 
in electrochemistry that: 

• Designed and ran experiments with a portable laboratory 
• Used the Fahrenheit system to induce numeric laws

• Including characterizations of maxima and minima
• Tested these hypothesized laws with further experiments

The system found novel results for both low ion concentrations 
and repeatability of peaks. 

This was the first example of a robotic scientist that supported
closed-loop scientific discovery. 
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A Robot Scientist for Cell Biology

King et al. (2009) have constructed an integrated system for 
biological discovery that: 

• Designs auxotrophic growth studies with yeast gene knockouts
• Runs these experiments using a robotic manipulator
• Measures growth rates for each experimental condition
• Revises its causal model for how genes influence metabolism

This closes the loop between experiment design, data collection,  
and model construction in biology. 

The system found improved models                                              
of metabolic regulation in yeast. 
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Closing Remarks



Scientific Discovery as Heuristic Search

Scientific discovery does not involve any mystical or irrational 
elements; we can study and even partially automate it. 
Our explanation of this fascinating set of mechanisms relies on: 

• Heuristic search through a space of laws or models

• Using operators for generating structures and parameters

• Guiding search by data and by knowledge about the domain

Systems discover laws and models stated in the formalisms and 
concepts familiar to scientists. 
This paradigm has already started to aid the scientific enterprise, 
and its importance will only grow with time. 

87



Observations on Scientific Discovery

Research on scientific discovery offers some important lessons: 
• Science adopts explicit formalisms for theories and models that are 

communicable to others. 
• Scientific research is not entirely data driven; it often uses existing 

knowledge to aid the discovery process. 
• Data is not the sole driver of discovery; science is a closed loop of 

model revision and data collection. 
• Science is concerned with more than prediction; mature fields insist 

that observations be explained in deeper terms. 
• Scientific insights do not require large amounts of data; in many 

fields, one must work with sparse samples.

We need less work on large data sets and more work on scaling 
to complex models and to large spaces of models.   
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Further Observations

Computational scientific discovery is not a new field, with 
decades of work dating back to the 1970s. 
･ There was originally great resistance to the idea that computers 

might discovery scientific laws and models. 

･ Computers are not number crunchers; they are general symbol 
processors that can encode any scientific content. 

･ Researchers have addressed a diverse set of discovery tasks, not 
all of them involving induction from data. 

･ Philosophers of science, cognitive psychologists, and artificial 
intelligence researchers all played roles in the movement.

Research in this tradition continues, but the number of active 
groups has been modest until recently. 
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Myths about Computing in Science

We should also debunk three myths about computing in science: 
• Computing is changing the basic nature of scientific research. 
• No. Science has always been a computational endeavor, and digital 

computers does not alter its basic operation. 
• Traditional science stood on two legs – theory and observation – and 

computing offers two more – simulation and data analysis. 
• No. Every facet of science is computational, and we can develop 

digital aids to make them each more efficient and effective. 
• Computer-aided science is best pursued with domain-specific tools. 
• No. There are general principles of science that apply to many 

fields, and we can encode them in programming abstractions.
We need less rhetoric on how ‘computers will change everything’ 
and more work on how to aid the current scientific process. 
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